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y* = arg max Z score(®(d))

Decomposition: D(y)
Scoring: score(®(d))

Summing: > ey

Search: arg max
YEYVx

Y, is exponentially-sized and prohibitive to
enumerate.



Structured Prediction: Sequence Labelling
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The Structured Perceptron [Collins, 2002]

w0 > the input is the training set {(x;,yi)}7_,
while not converged do
fori+1,...,ndo
y* < arg max w - ®(x;, y) > obtain model prediction
yEGEN(x;)
if y* # y; then > y* not correct
w — w+ O(x;, y;) — P(x;, y*) > online update

e Feature function: q)
e Structured output: Y/

e Search: dynamic programming

— beam search (the incremental structured perceptron [Collins and
Roark, 2004])

— dynamic programming + cube pruning [Chiang, 2007]



Structured Perceptron with Inexact
Search [Huang et al., 2012]

Graph-based dependency parsing

[Zhang and McDonald, 2012; Zhang et al., 2013]



Structured Perceptron with Inexact
Search [Huang et al., 2012]
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Hierarchical phrase-based translation

[Zhao et al., 2014]



Neural Network Models

e Sequence-to-Sequence [Sutskever et al., 2014]
— training: per-step cross-entropy
— test: p(y1,. .-y ¥nlXt, .oy xm) = [ pP(elya .-, ye—1,€)

— search: y* = arg max p(y|x)
YEYx

Representation learning: RNN, LSTM, CNN [Gehring et al., 2017]

Search: greedy, beam search (no search at training time)

Structured learning: [Ranzato et al., 2016; Wiseman and Rush, 2016]

most recent: [Edunov et al., 2017]



Neural Network Models + Structured
Perceptron-Inspired Updates
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Watanabe and Sumita, 2015 uses a variant of Max Violation.



Neural Network Models + Structured
Perceptron-Inspired Updates

Lee et al., 2016 extends Max Violation to All Violation.
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Outline

e Three models for shift-reduce CCG parsing
— representation learning: struct. perceptron, Elman RNN, and LSTM
— structured learning: sequence-level training (global vs. local)

— search: beam search for both training and testing




Dependency Parsing

A

Parse me if you can .
VERB PRON ADP PRON VERB PUNCT

Google SyntaxNet output



Transition-based Dependency Parsing

nsubj

Configuration ¢i | [(booked a ticket) (to  Google)
Stack Buffer

. ai
Action ¢ = Cjss

Derivation cp,a0— ¢1,a1 — C2,Q2

source: Google SyntaxNet
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Shift-Reduce CCG Parsing
Combinatory Categorial Grammar (CCG)

Parsing CCG — structured learning
— Supertagging (regular language; 1000 tags vs. 50 for CFG)

— Parsing (mildly context-sensitive; only a dozen rules vs. 500K for
CFG [Petrov and Klein, 2007])

Dual Decomposition, Belief Propogation [Auli and Lopez, 2011]

Remains to be the most competitive formalism for recovering “deep”
dependencies (from coordination, control, extraction etc.)
[Rimell et al., 2009; Nivre et al., 2010]
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Model 1
[Xu et al., ACL 2014]
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e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action

0 Ms. Haag plays Elianti

1 N/N | Haag plays Elianti SHIFT

2 N/N N | plays Elianti SHIFT

3 N | plays Elianti REDUCE
4 NP | plays Elianti UNARY
5 NP (S[dc/][\NP)/NP | Elianti SHIFT

6 NP (S[dc/[\NP)/NP N SHIFT

7 NP (S[dcl[\NP)/NP NP UNARY
8 NP S[dcl[\NP REDUCE
9 S[dcl] REDUCE
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Global Structured Training
[Collins and Roark, 2004]
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Global Structured Training
[Collins and Roark, 2004]

e Structured perceptron update: w < w + ¢(x;, ;) — é(x;, B;[0])
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Global Structured Training for CCG
[Zhang and Clark, 2011]

o Conditional log-linear vs. linear

e Dynamic programming vs. beam search

87.04

85.45 85.56
I - l 84 :

C&C (Chart) SR (Global)



Spurious Ambiguity in CCG

He reads the book He reads the book
NP (S\NP)/NP NP/N N NP (S\NP)/NP NP/N N
ST(S\WP e e
S/NP . ° S\NP
3 g S )
He reads the book He reads the book
NP (S\NP)/NP NP/N N NP (S\NP)/NP NP/N N
S/(S\NP) (S\NP)/N " (S\NP)/N ©
S/N - S\NP g
3 g S
(the, book)
(reads, book)
(reads, he)

In general, exponentially many!
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Motivation: Dependency Model

e The derivation is just a “trace” of the semantic interpretation
[Steedman, 2000]

— an elegant solution to the spurious ambiguity problem
— gold-standard data cheaper to obtain

— optimizing for evaluation
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Model 1: The Dependency Model

Use dependencies as the ground truth
— encoding exponentially many “correct” paths

— path selection is a hidden variable
A dependency oracle algorithm — online hypergraph search

A learning algorithm adapting early update (under the
violation-fixing struct. perceptron [Huang et al., 2012])

Beam search — global structured learning



The Dependency Model

[Clark et al., 2002] c&c (dep) z&cC  this work
Shift-Reduce X X v v
Dep. Model v v X v
Deriv. Feats X v v v
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e Compactly represents all derivation and dependency structure pair

e Grouping together equivalent chart entries

— identical category, head and unfilled dependencies
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The Oracle Forest

o A subset of the complete forest
— consistent with the gold-standard dependency structure

— exponentially-sized and impossible to enumerate
o A dependency structure decomposes over derivations
— dependencies are realized on conjunctive nodes

— can count dependencies on-the-fly

S\NP S\NP
JEWPIN NP

NP (S\NP)/NP
He bought

NP/N
|
some books
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e intution 1: dependencies “live on" conjunctive nodes
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The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

e intution 2: a conj. node that has less than the max possible number
of gold-standard dependencies is not gold (optimal substructure)
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Shift-Reduce Dependency Oracle

e The dependency oracle

true ifs'~Gors' ~G
false otherwise

fa((s, ), (x, c), ®c) = {

J/(S\NP)/N .
o \NP)/ =3
NP (S\NP)/NP NP/N N

He bought some books



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[dcl]\NP
‘ /\
N (S[dc\NP)/NP NP
N \
N/N N visited N

Mr. President Paris



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce Unary



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce Unary Shift



The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce Unary Shift Shift Unary Reduce Reduce
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The Dependency Model Oracle

S[del]
/\
NP S[dcl]\NP

‘ T
N (S[dc]]\NP)/NP NP

N | |

N/N N visited N

Mr. President Paris

Mr. President visited
N/N N (S[dcI]\NP)/NP
>
N




The Dependency Model Oracle

e The dependency oracle

true ifs'~Gors' ~G
false otherwise

fal(5. ) (x, ). 0) = {

e Shared ancestor set

— contains possible valid nodes an item should visit
— is built on-the-fly during decoding for each action type

— constructed with each valid action
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Training: Chart-based Dependency Model

e Exponentially many derivations w consistent with a dependency
structure 7 [Clark and Curran, 2007]

P(m]S) = X vea(m) Plw,m[$)

L) = L(A) = G(A)
= |0gHPA(7Tj|51)—_Z;;_2

> den(n) A-flam) B i A?
eAf(w) 202

wEp(S)) i=1 T

m
Z log
j=1

o Requires summing over all w



Online Training

e The normal-form model uses the perceptron with early update

— only one correct sequence

— “violation” is guaranteed [Huang et al., 2012]

YR

y* <+ arg max w - ®(x;, y)
yEGEN(x;)




Online Training

e Standard early update no longer valid for the dependency model

— multiple correct items possible in each beam

— ‘violation” is not guaranteed [Huang et al, 2012]
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Online Training

e Standard early update no longer valid for the dependency model

— multiple correct items possible in each beam

— ‘violation” is not guaranteed [Huang et al, 2012]

- w  w+ ¢(M[0]) — ¢(5i[0])

-
best in the beam d; d;. ;7
||
B > 58 _
= H 38 y V8
§ 3 Eg dw 8
E
worst in the beam d- " standard update
d; is invalid

from Heng et al., 2013
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Model 2

[Xu et al., NAACL 2016]
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Shift-Reduce Parsing

o Linear model (struct. perceptron, SVM etc.)
- score(y,-) =W- ¢(<57 q>a.yf)

~ score(y) = -1} score(yi)

— y* = arg max score(y)
YEYx

o Great flexibility in defining the feature functions

— results in millions of indicator features

— sparse and expensive to compute

e [Yamada and Matsumoto, 2003; Huang and Sagae, 2010; Zhang and
Clark, 2011; Zhang and Nivre, 2011; Goldberg and Nivre, 2012;
Bohnet et al., 2013; Zhu et al., 2013]



Sparse Features

feature templates

Sowp, Soc¢, Sopc, Sewc,
S1wp, Sic, S1pc, Siwe,
Sapc, Sawc,
S3pc, Szwc,

[N}

Qowp, Qiwp, Qowp, Q3wp,

SoLpc, SyLwe, SyRpc, SyRwe,
SoUpc, SoUwec,
SiLpc, SiLwc, S1Rpc, S1Rwe,
S1Upc, S1Uwec,

SowcS1wc, SocS1w, SowSic, SocSic,
SowcQowp, SocQowp, SowcQop, SocQop,
S1wcQowp, S1cQowp, S1weQop, S1¢Qop,

SoweS1¢Qop, SocS1WeQop, SocS1¢Qowp,
S0¢S1¢Qop, SopS1pQop:

SowcQopQip, SocQowpQ1p, SocQopQiwp,
SocQopQ1p, SopQopQip,

SowcS;¢Sac, SpcS;weSac, SpcS cSawe,
SocS1cSac, SopS1pSa2p,

SocSoHcSpLc, SpcSpHceSpRe,
S1¢S1HcSqRe,

SocSoRcQop, SocSoRcQow,
SopcSpLcS;c, SpcSoLcS 1w,
SpcS;cSiRe, SowS; ¢S Re.

Table 1: Feature templates.

Zhang and Clark, 2011
g



Kernel Features [Chen and Manning, 2014]

50.W 51.W S2.W 53.W
5.Wqp 5 Wq 5.Wo 5.W3
so.lw  splw o os,rw o osrw
qo-W q1.-W q2.W q3.W
5p.C S[).I.C 50.r.C

51.C .‘51.|.C 51.r.C

59.C 53.C




Kernel Features [Chen and Manning, 2014]

Softmax layer:

p = softmax(Wsh)

Hidden layer
h=

(W + Wizt 4+ Wizl +b,)°

_______ | [ ——— )
Input layer: [z, z*, z!] [ 4‘ 3 0% “ %‘\\\ ]

_____ —Seesaatieashe gt
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Stack Buffer
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Kernel Features [Chen and Manning, 2014]

Softmax layer:
p = softmax(Wsh)
Hidden layer:
h= (Wia® 4+ Wizt + Wizl +b))°
Input layer: [z, z*, z!] [ o ‘”‘
words POS tags arc ]abels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control_NN
“ nsubj
He PRP

State-of-the-art results at the time!
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Local Normalization

exp{v(yt, <57 q>}t/71; 9)}
Z (<57 q>§’_1)

p(yel(s, q)5 " 0) =

Z({e, B);71) = Yo ey (@, 8y )

}’t'ET((aa5>;7l)

|yl |yl —1.
p(r10) = [T ploel(fa 15 23s0) = SRt 200 (0 3 6)

R A



Global Normalization (CRF)
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Global Normalization (CRF)

exp{SW (v, (@, B)10)}

p(y|0) = Z

vl

Zo= Y epy v (a.B),"0)

Y'ESyy =1



Global Normalization (CRF)

exp{SW (v, (@, B)10)}

9 =
p(y10) Z
Iyl )
.
Ze= > expd (e B, 0
Y'ESyy t=1
Iyl
y* = arg max Z'y(y{, (o, B)54:0)
Y'ESy o1

[Zhou et al., 2015; Andor et al., 2016]



Local vs. Global Normalization

Zi(la, By = Y, exp{rlyds (e 8)y N 0))

v €T ((.8)y)

|

Ze= Y e (v B),0)

Y €Sy t=1

The label bias problem [Bottou et al., 1997; Le Cun et al., 1998; Lafferty
et al., 2001];
Andor et al., 2016 showed that P, C Pg (assuming no lookahead)
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Expected F-measure Training for Shift-Reduce
Parsing with RNINs

NN Beam (Train) Beam (Test) global
C&M, 2014 v X v X
present model v v v v

At the same time, the model is optimized towards the final
evaluation metric v/
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@ Train a baseline model using a cross-entropy loss (pretraining)

SR
G000

500

L(0s) = ZP tl0g), 0 ={U,V,W}



Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search
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@ Let 6 = 0, and parse each sentence in the training data with beam
search
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Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search
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@ Let 6 = 0, and parse each sentence in the training data with beam
search
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Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

el %

Y G .
Imémém%m%m%%
o B

|yl
i) = logsalyj),  F1(A,,AL)

h,




Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and
iterate
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© Compute the -XF1 loss for each sentence, do SGD update and
iterate
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Expected F-Measure Training: Step 3

© Compute the -XF1 loss for each sentence, do SGD update and
iterate

J(O) = —XF1(0) = — > p(vil0)FL(A,, AS),
Yfe/\(xn)

19 exp{7(yi)}
(y"(’)‘zy@ b (1))

(i)
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Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and
iterate
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¥
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Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and

o Y ek
K- Bk
|mwmwmwa%

8J9 65
20 §:zw<9>

YiEN(xn) Yi€Yi



Expected F-Measure Training

output | action sequence | y(yi) | F1

pZ1 Vit Y12... Yii -0.60 | 0.67
¥2 Yo1 Y22... Yo -1.5 0.81
3 Y31 Y32 .. Y3k -4.96 | 0.90
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Expected F-Measure Training

output | action sequence | y(yi) | F1

pZ1 Vit Y12... Yii -0.60 | 0.67
¥2 Yo1 Y22... Yo -1.5 0.81
3 Y31 Y32 .. Y3k -4.96 | 0.90

J(0) = =XF1(0) = — 3, cpp) POAOFL(Ay,, AS) = — 71.00

output | action sequence | y(yi) | F1

Z1 211 212 ... Z1j -0.90 0.71
2z 221 202 ... 29 -0.99 | 0.72
Z3 Z31 232 ... Z3k -3.76 0.73

J(0) = =XF1(0) = = 3, cax) P(ZIOFL(A,, AL ) = — 71.20



Related Work

m

Perceptron Layer 9:}%% )le vi) - ol c5)
0000

Softmax Layer P(y) ocexp{B, hz +b,}

Embedding Layer 1 = [X,E,] Vg € {word, tag, label}

[m-

]nput / 1 Features Extracted
det [nsubj__ Stack Bufler 8ibi
. U lealsi), dea(si)
: | | ‘ rex(si) rea(si)

rey(res(si))

tex(ter(s:))

[Weiss et al., 2015]
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— max-margin based objective
— max-violation updates [Huang et al., 2012]

e Zhou et al., 2015
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Related Work

Watanabe and Sumita, 2015

— max-margin based objective
— max-violation updates [Huang et al., 2012]

Zhou et al., 2015

— based on Chen and Manning, 2014
— CRF [Bottou et al., 1997; Le Cun et al., 1998; Lafferty et al., 2001]

Andor et al., 2016

— based on Chen and Manning, 2014 and Weiss et al., 2015
— also CRF

Optimizing task-specific metrics for parsing
— e.g., Goodman, 1996; Smith and Eisner, 2006; Auli and Lopez, 2011



Eval: F1 over Labeled, Directed CCG Deps

/\/K—/_\x

the books which John likes
NP/N N (NP\NP)/(S/NP) ~ NP _ (S\NP)/NP
NP S/(S\NP)
s/Np°
NP\ NP g
NP =

(the, NP/Ny, 1, books,)

(likes, (S\NP1)/NP>, 1, John)
(which, (NP/NP1)/(S/NP)2, 2, likes)
(which, (NP/NP1)/(S/NP)2, 1, books)

(likes, (S\NP1)/ NP5, 2, books)



The Greedy Model and Beam Search (Dev)

beam F1

b=1 | 84.61
b=2 | 84.94
b=4 | 8501
b=6 | 85.02
b=8 | 85.02
b=16 | 85.01

b e {6,8} gives +0.41% Fl over b=1



XF1 Model Dev F1 vs. Training Epochs

85.8
85.7 1
85.6
855 1
854 ¢
853 1
85.2
85.1

85

F1 on dev set

. RNN-xF1 (b =8) ——
0 10 20 30 40 50 60

training epochs



Test Set Parsing Results

Model LP LR LF  CAT | Speed
c&C (normal) 85.45 83.07 8470 92.83 | 97.90
c&c (hybrid) 86.24 84.17 85.19 93.00 | 95.25
Zhangll (b=16) | 87.04 84.14 8556 92.95 | 49.54
Xul4 (b = 128) 87.03 8508 86.04 93.10 | 12.85
Am16 (b= 1) - - 83.27 91.89 | 350.00
Am16 (b = 16) - - 85.57 92.86 | 10.00
RNN-greedy (b =1) | 88.53 81.65 84.95 0357 | 337.45
RNN-greedy (b= 6) | 88.54 8277 8556 93.68 | 96.04
RNN-XF1 (b=8) | 8874 8422 8642 03.87 |67.65

Zhangll = Zhang and Clark, 2011*, Xul4 = [Xu et al., 2014];
AM16 = Ambati et al., 2016 (NN + Struct. Percep [Weiss et al.,
2015))

The XF1 model improves LR by 2.57% and LF by 1.47% over
RNN-greedy (b = 1)



Model 3
[Xu, EMNLP 2016]



Transition-based Dependency Parsing

nsubj

Configuration ¢i | [(booked a ticket) (to  Google)
Stack Buffer

. ai
Action ¢ = Cjss

Derivation cp,a0— ¢1,a1 — C2,Q2

source: Google SyntaxNet
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Models

e Local linear (e.g., SVM) = global linear (e.g., struct. perceptron)

e Local NNs and RNNs = global NNs and RNNs (e.g., NNs +
CRF [Andor et al., 2016] and XF1)

step ‘ stack (sn,...,S1,50) ‘ queue (qo,q1--.,Gn) ‘ action
0 ‘ ‘ Ms. Haag plays Elianti ‘

No “global” sensitivity to parser states

Solution: Stack-LSTM [Dyer et al., 2015]



Stack-LSTM [Dyer et al., 2015]

step | stack (sn,...,s1,%) queue (qo,q1...,qn) action

0 Ms. Haag plays Elianti

1 N/N Haag plays Elianti SHIFT

2 N/N N plays Elianti SHIFT

3 N plays Elianti REDUCE
4 NP plays Elianti UNARY
5 NP (S[dcl]\NP)/NP Elianti SHIFT

6 NP (S[dcl]\NP)/NP N SHIFT

7 NP (S[dc/]\NP)/NP NP UNARY
8 NP S[dcl]\NP REDUCE
9 S[dcl] REDUCE



Stack-LSTM [Dyer et al., 2015]

step | stack (sn,...,S51,%) queue (qo,q1 - .., qn) action

0 Ms. Haag plays Elianti

1 N/N Haag plays Elianti SHIFT

2 N/N N plays Elianti SHIFT

3 N plays Elianti REDUCE
4 NP plays Elianti UNARY
5 NP (S[dcl]\NP)/NP Elianti SHIFT

6 NP (S[dcl]\NP)/NP N SHIFT

7 NP (S[dcl]\NP)/NP NP UNARY
8 NP S[dcl]\NP REDUCE
9 S[dcl] REDUCE

LSTM-stack , LSTM-queue , LSTM-action
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Stack-LSTM [Dyer et al., 2015]

Na

N\

It showed promise



Stack-LSTM [Dyer et al., 2015]

i

N\

It showed promise



LSTM Shift-Reduce CCG Parsing
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LSTM Shift-Reduce CCG Parsing

the books which John likes
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LSTM Shift-Reduce CCG Parsing

the books which John likes
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LSTM Shift-Reduce CCG Parsing

the books which John likes
NP/N N (NP\NP)/(S/NP) NP
—_—
NP
0 e s B e B e

5K I e O e O o I B B
B B B B O o B B B
N g I B o



LSTM Shift-Reduce CCG Parsing

W]
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LSTM Shift-Reduce CCG Parsing

8¢ = [ny' hEihy; by

Mindlin M,
Mindiin M, (-
Mindlin M, A

A0
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LSTM Shift-Reduce CCG Parsing

8¢ = [ny' hEihy; by
b: = f(B[6:; Q;] +1)

at == f(Abt + S)

H



Two Simple Motivations: |

N

He learned some French and German

N

this parser

Y~ N\
He learned some French and German

Google SyntaxNet and Stanford



Two Simple Motivations: Il

input : wp ... Wp_1
axiom : 0: (0,¢, 8, ¢)
goal 1 2n — 1+H : (I‘I,(S,E,A)

w: (j, 6, xw, |8, D)
w+1:(j+176|ij-567A)

(SHIFT; 0 < j < n)

w: (f,0]s1]%0, 8, 4)
w+1:(j,d]x, 8,AU(x)))

(REDUCE; s150 — X)

w: (J,d]s0, B, A)
w+1: U,a‘x7ﬂaA)

(UNARY; s — X)



Results: Locally Normalized Models

86.56
86.20 86.25

83.05

LSTM-W LSTM-W+C LSTM-W+C+A LSTM-W+C+A+P



F1 (labeled) on dev set

Results: Locally Normalized Models

87

86 |
85 | <
84 |,

83 |
82 |
81 |
80 |
79 |

78

LSTM-wc
LSTM-wca

LSTM-w —+—

LSTM-wcap —<—

0 5 10 15 20

Training epochs

25

30



Results: Locally Normalized Models

86.42 86.56

84.95

RNN-XENT (B =1) RNN-XF1 (B =8) LSTM-XENT (B = 1)



The Label Bias Problem
[Bottou et al., 1997; LeCun et al., 1998;
Lafferty et al., 2001]
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The Label Bias Problem
[Bottou et al., 1997; LeCun et al., 1998;
Lafferty et al., 2001]

exp{v(ve, (s,9)%71; 0)}
Z (<57 q);il)

plyel(s,q)5 " 0) =

Z({e, B); 1) = > ey (. 8); N 0)}

v €T ((,8)y7")

Andor et al., (2016) showed that P; C Pg and label bias is irrespective
of the scoring function ~



XF1 Training
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XF1 Training
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F1 (labeled) on dev set

87.5

87.4 ¢
87.3
87.2 t
87.1

87 t
86.9
86.8 |

86.7
86.6

Results: XF1 Models

LSTM-XF1 (beam = 8) ——

0 5 10 15
Training epochs

20



Results: XF1 Models

87.76

87.62

86.83

LSTM-XENT LSTM-XF1 (B =1)  LSTM-XF1 (B = 8)



Impl.: Tree-Structured Stack 4+ Dynamically
Structured Graph
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Impl.: Tree-Structured Stack 4+ Dynamically
Structured Graph

. shy shy shs shy shg shg res reg
!

LN
N 7z
N // \\§ ’//

=
[
I

BPTS(s,.A)

2. > Onbim

mées,. A.keysi€s, . A[m]

Sr

S S G p(nIO)XFI(9) — FL(A,, AS)) =

. Zm
mes,. A.keys i€s,. A[m]

XF1 gradient per action



Impl.: Tree-Structured Stack 4+ Dynamically
Structured Graph

CNN = DyNet
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Conclusions

Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

Local RNN = global RNN (optimized for the evaluation metric)

Local LSTM with global sensitivity = global LSTM (optimized for
the evaluation metric)

Beam search = struct. perceptron, RNN, and LSTM = global
structured learning



