Structured Learning with Inexact Search:
Advances in Shift-Reduce CCG Parsing

This work is made possible and fully supported by the Carnegie Trust
for the Universities of Scotland and the Cambridge Trust.

Structured Prediction in NLP

y* = arg max Z score(®(d))

Structured Prediction in NLP

y* = arg max Z score(®(d))

e Decomposition: D(y)

Structured Prediction in NLP

y* = arg max Z score(®(d))

e Decomposition: D(y)

e Scoring: score(®(d))

Structured Prediction in NLP

y* = arg max Z score(®(d))

e Decomposition: D(y)
e Scoring: score(®(d))

o Summing: > jep(y)

Structured Prediction in NLP

y* = arg max Z score(®(d))

Decomposition: D(y)
Scoring: score(®(d))

Summing: > ey

Search: arg max
YEYVx

Structured Prediction in NLP

y* = arg max Z score(®(d))

Decomposition: D(y)
Scoring: score(®(d))

Summing: > ey

Search: arg max
YEYVx

Y, is exponentially-sized and prohibitive to
enumerate.

Structured Prediction: Sequence Labelling

Ho¥oXlodloX

SEASBASADANNY

MEMM [McCallum et al., 2000]

POY1s- - YmlX1s - ooy Xm)

MEMM [McCallum et al., 2000]

POY1s- - YmlX1s - ooy Xm)

m
=TI pWilya- syicixa, o xm)
i=1

MEMM [McCallum et al., 2000]

p(y17 s 7ym|X17 SR 7Xm)

I
.EE

p(ylbq ceey Yi—1, X1y - - 7Xm)
1

-~

I
.:3

p(yi‘yi—laxla cee 7Xm)
1

-~

MEMM [McCallum et al., 2000]

Py, s YmlXts oy Xm)

E

=TI pWilya- syicixa, o xm)
1

4 .
(3 I,
A

= _P(}/i‘}/i—laxla-“axm)
1

4 ~.)

Il
[3 /|
|

exp{w . <I>(x1, oo s Xm, i,}/i—layi)}
---1~ Zyi/ exp{w : cD(Xl, cee sy Xmy iayi—l?yil)}

=

CRF [Lafferty et al., 2001]

P()/l; s 7ym‘X17 SR 7Xm)

CRF [Lafferty et al., 2001]

P()/l; s 7ym‘X17 SR 7Xm)

1 m F
= ;exp{z ij(bj(yi—l)yi?X) I)}

i=1 j=1

CRF [Lafferty et al., 2001]

P(Y1,- s YmlXt, oy Xm)

1 m F
= ;exp{z ij(bj(yi—l)yi?X? I)}

i=1 j=1

zZ = Z exp{z ZWJ¢J(YI 1, Yi, X, ’)}

yl:meyx =]-J

p(yi, -

Py,

MEMM and CRF

7Ym|X1>- cey X

H exp{w (b Xla" Xm,ivyi—layi)}
T 2y

! exp{w (D(le <oy Xmy ivyiflvyi/)}

1 m F '
7}/m|X1»- .. 7Xm) = EeXP{ZZWj(bj(YFLYiaXa I)}

i=1 j=1

Feature function: q>
Structured output: Y/

Search: dynamic programming + Viterbi decoding

e arg max p(y1, .- -, Ym|X1, - -+, Xm)

p(yi, -

Py,

MEMM and CRF

7}’m|X1>- cey X

H exp{w ¢ Xla" Xm,ivyi—la.yi)}
T 2y

! exp{w (D(le <oy Xmy ivyiflvyi/)}

1 m F '
7)/m|X1»- .. aXm) = EeXP{ZZWj(bj(Yifla)/iaXa I)}

i=1 j=1

Feature function: q)
Structured output: Y/

Search: dynamic programming + Viterbi decoding

e arg max p(y1, .- -, Ym|X1, - -+, Xm)

swen =

S

The Structured Perceptron [Collins, 2002]

w0 > the input is the training set {(x;,yi)}7_,
while not converged do
fori+1,...,ndo
y* < arg max w - ®(x;, y) > obtain model prediction
yE€GEN(x;)
if y* # y; then > y* not correct

W W+ D(x;, yi) — D(xi, y*) > online update

swen =

S

The Structured Perceptron [Collins, 2002]

w0 > the input is the training set {(x;,yi)}7_,
while not converged do
fori+1,...,ndo
y* < arg max w - ®(x;, y) > obtain model prediction
yEGEN(x;)
if y* # y; then > y* not correct

W W+ D(x;, yi) — D(xi, y*) > online update

swen =

S

The Structured Perceptron [Collins, 2002]

w0 > the input is the training set {(x;,yi)}7_,
while not converged do
fori+1,...,ndo
y* < arg max w - ®(x;, y) > obtain model prediction
yEGEN(x;)
if y* # y; then > y* not correct
w — w+ O(x;, y;) — P(x;, y*) > online update

e Feature function: q)
e Structured output: Y/

e Search: dynamic programming

swen =

S

The Structured Perceptron [Collins, 2002]

w0 > the input is the training set {(x;,yi)}7_,
while not converged do
fori+1,...,ndo
y* < arg max w - ®(x;, y) > obtain model prediction
yEGEN(x;)
if y* # y; then > y* not correct
w — w+ O(x;, y;) — P(x;, y*) > online update

e Feature function: q)
e Structured output: Y/

e Search: dynamic programming

— beam search (the incremental structured perceptron [Collins and
Roark, 2004])

swen =

S

The Structured Perceptron [Collins, 2002]

w0 > the input is the training set {(x;,yi)}7_,
while not converged do
fori+1,...,ndo
y* < arg max w - ®(x;, y) > obtain model prediction
yEGEN(x;)
if y* # y; then > y* not correct
w — w+ O(x;, y;) — P(x;, y*) > online update

e Feature function: q)
e Structured output: Y/

e Search: dynamic programming

— beam search (the incremental structured perceptron [Collins and
Roark, 2004])

— dynamic programming + cube pruning [Chiang, 2007]

Structured Perceptron with Inexact
Search [Huang et al., 2012]

Graph-based dependency parsing

[Zhang and McDonald, 2012; Zhang et al., 2013]

Structured Perceptron with Inexact
Search [Huang et al., 2012]

o Bush 1 hel’d o talks 3 with 4 éharon 5

A
X X X

‘ —

s X

T~ [0:1] [2:3] [1:3] [4:5]

S
Hierarchical phrase-based translation

[Zhao et al., 2014]

Neural Network Models

e Sequence-to-Sequence [Sutskever et al., 2014]
— training: per-step cross-entropy
— test: p(y1,. .-y ¥nlXt, .oy xm) = [pP(elya .-, ye—1,€)

— search: y* = arg max p(y|x)
YEYx

Representation learning: RNN, LSTM, CNN [Gehring et al., 2017]

Search: greedy, beam search (no search at training time)

Structured learning: [Ranzato et al., 2016; Wiseman and Rush, 2016]

most recent: [Edunov et al., 2017]

Neural Network Models + Structured
Perceptron-Inspired Updates

next stack queue
h3 i1 hj1 by ¢ Qit1

1 0)
h] h] Wsh 3.32 xl—'_ 1
current stack input

Watanabe and Sumita, 2015 uses a variant of Max Violation.

Neural Network Models + Structured
Perceptron-Inspired Updates

Lee et al., 2016 extends Max Violation to All Violation.

Outline

e Three models for shift-reduce CCG parsing
— representation learning:
— structured learning:

— search:

Outline

e Three models for shift-reduce CCG parsing
— representation learning: struct. perceptron, Elman RNN, and LSTM
— structured learning:

— search:

Outline

e Three models for shift-reduce CCG parsing
— representation learning: struct. perceptron, Elman RNN, and LSTM
— structured learning: sequence-level training (global vs. local)

— search:

Outline

e Three models for shift-reduce CCG parsing
— representation learning: struct. perceptron, Elman RNN, and LSTM
— structured learning: sequence-level training (global vs. local)

— search: beam search for both training and testing

Outline

e Three models for shift-reduce CCG parsing
— representation learning: struct. perceptron, Elman RNN, and LSTM
— structured learning: sequence-level training (global vs. local)

— search: beam search for both training and testing

+
L kg
best in the beam di di* d-
||
c
4 H 5% y W8
- ©
3 s EQ diy ('8
g >
worst in the beam standard update

N
+

is invalid

from Heng et al., 2013

Outline

e Three models for shift-reduce CCG parsing
— representation learning: struct. perceptron, Elman RNN, and LSTM
— structured learning: sequence-level training (global vs. local)

— search: beam search for both training and testing

Dependency Parsing

A

Parse me if you can .
VERB PRON ADP PRON VERB PUNCT

Google SyntaxNet output

Transition-based Dependency Parsing

nsubj

Configuration ¢i | [(booked a ticket) (to Google)
Stack Buffer

. ai
Action ¢ = Cjss

Derivation cp,a0— ¢1,a1 — C2,Q2

source: Google SyntaxNet

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
W

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes

NP/N N (NP\NP)/(S/NP) NP _ (S\NP)/NP
NP S/(S\NP)

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

>B

S/NP

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes
NP/N N (NP\NP)/(§/NP) — NP (S\NP)/NP
e S/(S\NP)

S/Np . °

>

NP\NP

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

the books which John likes
NP/N N (NP\NP)/(S/NP) NP _ (S\NP)/NP
N S/(S\NP)
S/Np . °
NP\ NP g

<

NP

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

e Parsing CCG
— Supertagging (regular language; 1000 tags vs. 50 for CFG)

— Parsing (mildly context-sensitive; only a dozen rules vs. 500K for
CFG [Petrov and Klein, 2007])

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

e Parsing CCG
— Supertagging (regular language; 1000 tags vs. 50 for CFG)

— Parsing (mildly context-sensitive; only a dozen rules vs. 500K for
CFG [Petrov and Klein, 2007])

Shift-Reduce CCG Parsing

e Combinatory Categorial Grammar (CCG)

e Parsing CCG — structured learning
— Supertagging (regular language; 1000 tags vs. 50 for CFG)

— Parsing (mildly context-sensitive; only a dozen rules vs. 500K for
CFG [Petrov and Klein, 2007])

Shift-Reduce CCG Parsing
e Combinatory Categorial Grammar (CCG)

e Parsing CCG — structured learning
— Supertagging (regular language; 1000 tags vs. 50 for CFG)

— Parsing (mildly context-sensitive; only a dozen rules vs. 500K for
CFG [Petrov and Klein, 2007])

o Dual Decomposition, Belief Propogation [Auli and Lopez, 2011]

Shift-Reduce CCG Parsing
Combinatory Categorial Grammar (CCG)

Parsing CCG — structured learning
— Supertagging (regular language; 1000 tags vs. 50 for CFG)

— Parsing (mildly context-sensitive; only a dozen rules vs. 500K for
CFG [Petrov and Klein, 2007])

Dual Decomposition, Belief Propogation [Auli and Lopez, 2011]

Remains to be the most competitive formalism for recovering “deep”
dependencies (from coordination, control, extraction etc.)
[Rimell et al., 2009; Nivre et al., 2010]

Shift-Reduce CCG Parsing

the books which John likes

Shift-Reduce CCG Parsing

the books which
NP /N

SH

John

likes

Shift-Reduce CCG Parsing

the books which John likes
NP /N N

SH SH

Shift-Reduce CCG Parsing

PN
the books which

NP/N N

>
NP

SH SH RE

John

likes

Shift-Reduce CCG Parsing

O\
the books which John likes

NP /N N (NP\NP)/(S/NP)

NP

SH SH RE SH

Shift-Reduce CCG Parsing

O\
the books which John likes
NP /N N (NP\NP)/(S/NP) NP
- >
NP

SH SH RE SH SH

Shift-Reduce CCG Parsing

O\
the books which John likes
NP /N N (NP\NP)/(S/NP) NP
- > >T
NP S/(S\NP)

SH SH RE SH SH UN

Shift-Reduce CCG Parsing

RN
the books which John likes
NP /N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP] S/(S\NP>)T

SH SH RE SH SH UN SH

Shift-Reduce CCG Parsing

Y~ O\ PN
the books which John likes
NP /N N (NP\NP)/(S/NP) NP (S\NP)/NP
- > >T
NP S/(S\NP)
>B
S/NP

SH SH RE SH SH UN SH RE

Shift-Reduce CCG Parsing

/\/{/_\x

the books which John likes

NP /N N (NP\NP)/(S/NP) NP (S\NP)/NP

_ >T

NP S/(S\NP)
>B
S/NP
>
NP\NP
<
NP

SH SH RE SH SH UN SH RE RE RE

Model 1
[Xu et al., ACL 2014]

Standard Training: Greedy Local Model

the books which John likes
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
_ > >T
NP S/(S\NP)
>B
S/NP
>
NP\NP
NP

SH SH RE SH SH UN SH RE RE RE

Standard Training: Greedy Local Model

e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action

0 Ms. Haag plays Elianti

Standard Training: Greedy Local Model

e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action
0 Ms. Haag plays Elianti
1 N/N | Haag plays Elianti SHIFT

Standard Training: Greedy Local Model

e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action
0 Ms. Haag plays Elianti

1 N/N | Haag plays Elianti SHIFT
2 N/N N | plays Elianti SHIFT

Standard Training: Greedy Local Model

e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action

0 Ms. Haag plays Elianti

1 N/N | Haag plays Elianti SHIFT

2 N/N N | plays Elianti SHIFT

3 N | plays Elianti REDUCE

Standard Training: Greedy Local Model

e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action

0 Ms. Haag plays Elianti

1 N/N | Haag plays Elianti SHIFT

2 N/N N | plays Elianti SHIFT

3 N | plays Elianti REDUCE
4 NP | plays Elianti UNARY

Standard Training: Greedy Local Model

e Score of an action a = w - ¢((s, q), a)

e No search at training time, can use beam search decoding

step stack (sn,...,51,5) | queue (go,q1...,Qn) action

0 Ms. Haag plays Elianti

1 N/N | Haag plays Elianti SHIFT

2 N/N N | plays Elianti SHIFT

3 N | plays Elianti REDUCE
4 NP | plays Elianti UNARY
5 NP (S[dc/][\NP)/NP | Elianti SHIFT

6 NP (S[dc/[\NP)/NP N SHIFT

7 NP (S[dcl[\NP)/NP NP UNARY
8 NP S[dcl[\NP REDUCE
9 S[dcl] REDUCE

Global Structured Training
[Collins and Roark, 2004]

e Score of an action a = w - ¢((s, q), a)

Global Structured Training
[Collins and Roark, 2004]

e Score of an action a = w - ¢((s, q), a)

Global Structured Training
[Collins and Roark, 2004]

e Structured perceptron update: w < w + ¢(x;, ;) — é(x;, B;[0])

&

-

Global Structured Training
[Collins and Roark, 2004]

e Structured perceptron update: w < w + ¢(x;, ;) — é(x;, B;[0])

n

EEEIE §
NG

Global Structured Training
[Collins and Roark, 2004]

e Structured perceptron update: w < w + ¢(x;, ;) — é(x;, B;[0])

| HSHS{{
NG

Global Structured Training
[Collins and Roark, 2004]

e Structured perceptron update: w < w + ¢(x;, ;) — é(x;, B;[0])

S S

-
N

Global Structured Training for CCG
[Zhang and Clark, 2011]

o Conditional log-linear vs. linear

e Dynamic programming vs. beam search

87.04

85.45 85.56
I - l 84 :

C&C (Chart) SR (Global)

Spurious Ambiguity in CCG

He reads the book He reads the book
NP (S\NP)/NP NP/N N NP (S\NP)/NP NP/N N
ST(S\WP e e
S/NP . ° S\NP
3 g S)
He reads the book He reads the book
NP (S\NP)/NP NP/N N NP (S\NP)/NP NP/N N
S/(S\NP) (S\NP)/N " (S\NP)/N ©
S/N - S\NP g
3 g S
(the, book)
(reads, book)
(reads, he)

In general, exponentially many!

Motivation: Dependency Model

e The derivation is just a “trace” of the semantic interpretation
[Steedman, 2000]

Motivation: Dependency Model

e The derivation is just a “trace” of the semantic interpretation
[Steedman, 2000]

— an elegant solution to the spurious ambiguity problem
— gold-standard data cheaper to obtain

— optimizing for evaluation

Model 1: The Dependency Model

o Use dependencies as the ground truth

— encoding exponentially many “correct” paths

S\NP S\NP
R (S\NP)/N N

NP (S\NP)/NP NP/N .I\'

|
He bought some books

Model 1: The Dependency Model

o Use dependencies as the ground truth
— encoding exponentially many “correct” paths

— path selection is a hidden variable

Model 1: The Dependency Model

o Use dependencies as the ground truth
— encoding exponentially many “correct” paths

— path selection is a hidden variable

e A dependency oracle algorithm — online hypergraph search

Model 1: The Dependency Model

o Use dependencies as the ground truth
— encoding exponentially many “correct” paths

— path selection is a hidden variable
e A dependency oracle algorithm — online hypergraph search

o A learning algorithm adapting early update (under the
violation-fixing struct. perceptron [Huang et al., 2012])

Model 1: The Dependency Model

Use dependencies as the ground truth
— encoding exponentially many “correct” paths

— path selection is a hidden variable
A dependency oracle algorithm — online hypergraph search

A learning algorithm adapting early update (under the
violation-fixing struct. perceptron [Huang et al., 2012])

Beam search — global structured learning

The Dependency Model

[Clark et al., 2002] c&c (dep) z&cC this work
Shift-Reduce X X v v
Dep. Model v v X v
Deriv. Feats X v v v

CCG Parse Forest

e Compactly represents all derivation and dependency structure pair

e Grouping together equivalent chart entries

— identical category, head and unfilled dependencies

— individual entries are conjunctive nodes and equivalence classes are
disjunctive nodes

JENDN T

NP (S\NP)/NP NP/N N NP (S\NP)/NP NP/N N
|

| |
He bought some books He bought some books

CCG Parse Forest

e Compactly represents all derivation and dependency structure pair

e Grouping together equivalent chart entries

— identical category, head and unfilled dependencies

— individual entries are conjunctive nodes and equivalence classes are
disjunctive nodes

S\NP S\NP

R (S\NP)/N NP

NP (S\NP)/NP NP/N .I\' NP (S\NP)/NP NP/N N
|

He bought some books He bought some books

The Oracle Forest

o A subset of the complete forest
— consistent with the gold-standard dependency structure

— exponentially-sized and impossible to enumerate
o A dependency structure decomposes over derivations
— dependencies are realized on conjunctive nodes

— can count dependencies on-the-fly

S\NP S\NP
JEWPIN NP

NP (S\NP)/NP
He bought

NP/N
|
some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

S\NP

S (S\NP)/N 1\-{])
NP (S\NP)/NP NP/N N

He bought some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

(some, NP/Ny, 1, books)

s\fyp S\NP
g (S\NP)/N NS

NP (S\NP)/NP NP/N N

|
He bought some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

/ (some, NP/Ny, 1, books)
\Nz N (bought, (S\NP;)/NP>, 2, books)

SEND/NG T

NP (S\NP)/NP NP/N N

|
He bought some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

3 2

Y (some, NP/Ny, 1, books)
“2 N (bought, (S\NP;)/NP>, 2, books)
(he, (S\NP;)/NP, 1, bought)

JEWNDN T

NP (S\NP)/NP NP/N N

|
He bought some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

(some, NP/Ny, 1, books)
(bought, (S\NP;1)/ NP>, 2, books)

3 53
(he, (S\NP;)/ NP5, 1, bought)

sk sie2

; (S\NP)/N NP
NP (S\NP)/NP NP/N
bought some books

He

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

e intution 2: a conj. node that has less than the max possible number
of gold-standard dependencies is not gold (optimal substructure)

3 3

(some, NP/Ny, 1, books)
(bought, (S\NP;1)/ NP>, 2, books)
(he, (S\NP;1)/NP>, 1, bought)

SEWNDN T
NP (S\NP)/NP NP/N N

He bought some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

e intution 2: a conj. node that has less than the max possible number
of gold-standard dependencies is not gold (optimal substructure)

(some, NP/Ny, 1, books)
(bought, (S\NP;1)/ NP>, 2, books)
(he, (S\NP;1)/NP>, 1, bought)

,"(’:}\NP N

NP (S\NP)/NP NP/N N

He bought some books

The Oracle Forest

e intution 1: dependencies “live on" conjunctive nodes

e intution 2: a conj. node that has less than the max possible number
of gold-standard dependencies is not gold (optimal substructure)

(some, NP/Ny, 1, books)
(bought, (S\NP;1)/ NP>, 2, books)
(he, (S\NP;1)/NP>, 1, bought)

S G\NP)/N o
NP (S\NP)/NP NP/N N

|
He bought some books

Shift-Reduce Dependency Oracle

e The dependency oracle

true ifs'~Gors' ~G
false otherwise

fa((s,), (x, c), ®c) = {

J/(S\NP)/N .
o \NP)/ =3
NP (S\NP)/NP NP/N N

He bought some books

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[dcl]\NP
‘ /\
N (S[dc\NP)/NP NP
N \
N/N N visited N

Mr. President Paris

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce Unary

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce Unary Shift

The Dependency Model Oracle

Canonical Shift-Reduce is bottom-up post-order traversal

S[dcl]
/\
NP S[del]\NP

‘ /\
N (S[dcl]\NP)/NP NP

N |

N/N N visited N

Mr. President Paris

Shift Shift Reduce Unary Shift Shift Unary Reduce Reduce

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

(S\NP)/N

(S\NP)/NP NP/N N

I
He bought some books

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

S S

S/(S\'NP) (S\NP)/N Np
I\}P (S\NP)/NP NP/N N
| |
He bought some books

Shift-NP

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

S/(S\NP) (S\NP)/N
NP (S\NP)/NP NP/N N
| I
He bought some books

Shift-NP Shift-(S\NP)/NP

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

S S

(S\NP)/N N~P

(S\NP)/NP NP/N N

He bought some books

Shift-NP Shift-(S\NP)/NP

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

S S

5/(5\NP) RN e
NP S\NF)/NP NP/N N
| I I
He bought some books

Shift-NP Shift-(S\NP)/NP Shift-NP/N

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

S S

5/(5\NP) GNRN e
NP (S\NP)/NP NP/N N
I
He bought some books

Shift-NP Shift-(S\NP)/NP Shift-NP/N

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

(S\NP)/N N'P

S/(S\NP)
NP (S\NP)/NP NP/N N
| |
He bought some books

Shift-NP Shift-(S\NP)/NP Shift-NP/N Shift-N

The Dependency Model Oracle

But this doesn't carry over to an oracle forest

S/(S\NP) BAND)/N NP
NP (S\NP)/NP NP/N N
| | | |
He bought some books

Shift-NP Shift-(S\NP)/NP Shift-NP/N Shift-N

The Dependency Model Oracle

S[del]
/\
NP S[dcl]\NP

‘ T
N (S[dc]]\NP)/NP NP

N | |

N/N N visited N

Mr. President Paris

Mzr. President
N/N N

The Dependency Model Oracle

S[del]
/\
NP S[dcl]\NP

‘ T
N (S[dc]]\NP)/NP NP

N | |

N/N N visited N

Mr. President Paris

Mr. President visited
N/N N (S[dcI]\NP)/NP
>
N

The Dependency Model Oracle

e The dependency oracle

true ifs'~Gors' ~G
false otherwise

fal(5.) (x,). 0) = {

e Shared ancestor set

— contains possible valid nodes an item should visit
— is built on-the-fly during decoding for each action type

— constructed with each valid action

The Dependency Model

S S

S\NP S\NP

."(S\ NP)/N
NP (S\NP)/NP NP/N I\II
He bought some books

stack (sn, ...,s1,%) | R(cs)

The Dependency Model

S S

S\NP S\NP

."(S\ NP)/N
NP (S\NP)/NP NP/N I\II
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP

The Dependency Model

S S

S\NP S\NP

."(S\ NP)/N

NP (S\NP)/NP NPI/ N I\II
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()

The Dependency Model

S S

S\NP S\NP

S (S\ND)/N N
NP (S\NP)/NP NP/N) ~N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP

The Dependency Model

S S

S\NP S\NP

."(S\NP)/ N

NP
NP (S\NP)/NP NP/N ~N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,S)

The Dependency Model

S S

S\NP S\NP

S (S\ND)/N N
NP (S\NP)/NP NP/N) ~N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,5)
NP (S\NP)/NP NP/N

The Dependency Model

S S

S\NP S\NP

J(S\NP)/N P
NP (S\NP)/NP NP/N N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,5)
NP (S\NP)/NP NP/N

The Dependency Model

S S

S\NP S\NP

."(S\NP)/ N

NP
NP (S\NP)/NP NP/N N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,S)
NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N)

The Dependency Model

S S

S\NP S\NP

."(S\NP)/ N

NP
NP (S\NP)/NP NP/N N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (5,5)
NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N)
NP (S\NP)/NP NP/N N

The Dependency Model

S S

S\NP S\NP

."(S\ NP)/N
NP (S\NP)/NP NP/N 1\|1
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (5,5)
NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N)
NP (S\NP)/NP NP/N N

The Dependency Model

S S

S\NP S\NP

."(S\ NP)/N

NP (S\NP)/NP NP/N N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()

NP (S\NP)/NP | (5,5)

NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)

The Dependency Model

S S

S\NP S\NP

; (S\NP)/N iﬂ’

NP (S\NP)/NP NP/N) .N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (5,5)
NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP

The Dependency Model

S S

S\NP S\NP

; (S\NP)/N iﬂ’

NP (S\NP)/NP NP/N) .N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (5,5)
NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N) <
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP

The Dependency Model

S S

S\NP S\NP

; (S\NP)/N ﬁp
NP (S\NP)/NP NPI/ N) N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,S)
NP (S\NP)/NP NP/N (S\NP (S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP | (S\NP)

The Dependency Model

S S

S\NP S\NP

SEWP/N

NP (S\NP)/NP NP/N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,S)
NP (S\NP)/NP NP/N (S\NP (S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP | (S\NP)
NP S\NP

The Dependency Model

S S

S\NP S\NP

SEWP/N

NP (S\NP)/NP NP/N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,S) «
NP (S\NP)/NP NP/N (S\NP (S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP | (S\NP)
NP S\NP

The Dependency Model

S S

S\NP S\NP

SEWP/N

NP (S\NP)/NP NP/N
He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | ()
NP (S\NP)/NP | (S,S)
NP (S\NP)/NP NP/N (S\NP (S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP | (S\NP)
NP S\NP | (S)

The Dependency Model

S S

S\NP S\NP

. (S\NP)/N N

NP (S\NP)/NP NPI/ N N

He bought some books

stack (sn, ...,s1,%) | R(cs)

NP | (
NP (S\NP)/NP | (S,S)
NP (S\NP)/NP NP/N | (S\NP,(S\NP)/N)
NP (S\NP)/NP NP/N N | (NP)
NP (S\NP)/NP NP | (S\NP)
NP S\NP | (S)
S

Training: Chart-based Dependency Model

e Exponentially many derivations w consistent with a dependency
structure 7 [Clark and Curran, 2007]

P(m]S) = X vea(m) Plw,m[$)

Training: Chart-based Dependency Model

e Exponentially many derivations w consistent with a dependency
structure 7 [Clark and Curran, 2007]

P(m]S) = X vea(m) Plw,m[$)

L) = L(A) = G(A)
= |0gHPA(7Tj|51)—Z;;_2

> den(n) A-flam) B i A?
eAf(w) 202

wep(S) =1 i

m
Z log
j=1

Training: Chart-based Dependency Model

e Exponentially many derivations w consistent with a dependency
structure 7 [Clark and Curran, 2007]

P(m]S) = X vea(m) Plw,m[$)

L) = L(A) = G(A)
= |0gHPA(7Tj|51)—_Z;;_2

> den(n) A-flam) B i A?
eAf(w) 202

wEp(S)) i=1 T

m
Z log
j=1

o Requires summing over all w

Online Training

e The normal-form model uses the perceptron with early update

— only one correct sequence

— “violation” is guaranteed [Huang et al., 2012]

YR

y* <+ arg max w - ®(x;, y)
yEGEN(x;)

Online Training

e Standard early update no longer valid for the dependency model

— multiple correct items possible in each beam

— ‘violation” is not guaranteed [Huang et al, 2012]

TONTONT NN

Online Training

e Standard early update no longer valid for the dependency model

— multiple correct items possible in each beam

— ‘violation” is not guaranteed [Huang et al, 2012]

- w w+ ¢(M[0]) — ¢(5i[0])

-
best in the beam d; d;. ;7
||
B > 58 _
= H 38 y V8
§ 3 Eg dw 8
E
worst in the beam d- " standard update
d; is invalid

from Heng et al., 2013

Results

87.43

C&C (Hybrid) SR (Normal) SR (Dep)

Recall %

90
85

80
75 1
70 1
65 |
60 |
55

50

Results

sr-dep —<—
sr-normal ----- oo

0 5 10 15 20 25
Dependency length (bins of 5)

30

Model 2

[Xu et al., NAACL 2016]

Shift-Reduce Parsing

o Linear model (struct. perceptron, SVM etc.)
— score(y;) = w - ¢((s, q), yi)

~ score(y) = -1} score(yi)

— y* = arg max score(y)
YEYx

Shift-Reduce Parsing

o Linear model (struct. perceptron, SVM etc.)
— score(y;) = w - ¢((s, q), yi)

~ score(y) = -1} score(yi)

— y* = arg max score(y)
YEYx

o Great flexibility in defining the feature functions

Shift-Reduce Parsing

o Linear model (struct. perceptron, SVM etc.)
— score(y;) = w - ¢((s, q), yi)

~ score(y) = -1} score(yi)

— y* = arg max score(y)
YEYx

o Great flexibility in defining the feature functions

— results in millions of indicator features

Shift-Reduce Parsing

o Linear model (struct. perceptron, SVM etc.)
— score(y;) = w - ¢((s, q), yi)

~ score(y) = -1} score(yi)

— y* = arg max score(y)
YEYx

o Great flexibility in defining the feature functions

— results in millions of indicator features

— sparse and expensive to compute

Shift-Reduce Parsing

o Linear model (struct. perceptron, SVM etc.)
- score(y,-) =W- ¢(<57 q>a.yf)

~ score(y) = -1} score(yi)

— y* = arg max score(y)
YEYx

o Great flexibility in defining the feature functions

— results in millions of indicator features

— sparse and expensive to compute

e [Yamada and Matsumoto, 2003; Huang and Sagae, 2010; Zhang and
Clark, 2011; Zhang and Nivre, 2011; Goldberg and Nivre, 2012;
Bohnet et al., 2013; Zhu et al., 2013]

Sparse Features

feature templates

Sowp, Soc¢, Sopc, Sewc,
S1wp, Sic, S1pc, Siwe,
Sapc, Sawc,
S3pc, Szwc,

[N}

Qowp, Qiwp, Qowp, Q3wp,

SoLpc, SyLwe, SyRpc, SyRwe,
SoUpc, SoUwec,
SiLpc, SiLwc, S1Rpc, S1Rwe,
S1Upc, S1Uwec,

SowcS1wc, SocS1w, SowSic, SocSic,
SowcQowp, SocQowp, SowcQop, SocQop,
S1wcQowp, S1cQowp, S1weQop, S1¢Qop,

SoweS1¢Qop, SocS1WeQop, SocS1¢Qowp,
S0¢S1¢Qop, SopS1pQop:

SowcQopQip, SocQowpQ1p, SocQopQiwp,
SocQopQ1p, SopQopQip,

SowcS;¢Sac, SpcS;weSac, SpcS cSawe,
SocS1cSac, SopS1pSa2p,

SocSoHcSpLc, SpcSpHceSpRe,
S1¢S1HcSqRe,

SocSoRcQop, SocSoRcQow,
SopcSpLcS;c, SpcSoLcS 1w,
SpcS;cSiRe, SowS; ¢S Re.

Table 1: Feature templates.

Zhang and Clark, 2011
g

Kernel Features [Chen and Manning, 2014]

50.W 51.W S2.W 53.W
5.Wqp 5 Wq 5.Wo 5.W3
so.lw splw o os,rw o osrw
qo-W q1.-W q2.W q3.W
5p.C S[).I.C 50.r.C

51.C .‘51.|.C 51.r.C

59.C 53.C

Kernel Features [Chen and Manning, 2014]

Softmax layer:

p = softmax(Wsh)

Hidden layer
h=

(W + Wizt 4+ Wizl +b,)°

_______ | [———)
Input layer: [z, z*, z!] [4‘ 3 0% “ %‘\\\]

_____ —Seesaatieashe gt

words POS tags arc labels
Stack Buffer
Configuration ROOT has VBZ good_JJ | | control NN

“ nsubj

He_PRP

Kernel Features [Chen and Manning, 2014]

Softmax layer:
p = softmax(Wsh)
Hidden layer:
h= (Wia® 4+ Wizt + Wizl +b))°
Input layer: [z, z*, z!] [o ‘”‘
words POS tags arc]abels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control_NN
“ nsubj
He PRP

State-of-the-art results at the time!

Local Normalization

exp{v(yt, <57 q>}t/71; 9)}
Z (<57 q>§’_1)

p(yel(s, q)5 " 0) =

Local Normalization

exp{v(yt, <57 q>}t/71; 0)}
Z (<57 q>§’_1)

p(yel(s, q)5 " 0) =

Zi(a, By = Y exp{r(y (. B)0)}

yr’ET((a,»B);*l)

Local Normalization

exp{v(yt, <57 q>}t/71; 9)}
Z (<57 q>§’_1)

p(yel(s, q)5 " 0) =

Z({e, B);71) = Yo ey (@, 8y)

}’t'ET((aa5>;7l)

|yl |yl —1.
p(r10) = [T ploel(fa 15 23s0) = SRt 200 (0 3 6)

R A

Global Normalization (CRF)

exp{ Y (e (. B)5710))

p(y|0) = Z

Global Normalization (CRF)

exp{SW (v, (@, B)10)}

p(y|0) = Z

vl

Zo= Y epy v (a.B),"0)

Y'ESyy =1

Global Normalization (CRF)

exp{SW (v, (@, B)10)}

9 =
p(y10) Z
Iyl)
.
Ze= > expd (e B, 0
Y'ESyy t=1
Iyl
y* = arg max Z'y(y{, (o, B)54:0)
Y'ESy o1

[Zhou et al., 2015; Andor et al., 2016]

Local vs. Global Normalization

Zi(la, By = Y, exp{rlyds (e 8)y N 0))

v €T ((.8)y)

|

Ze= Y e (v B),0)

Y €Sy t=1

The label bias problem [Bottou et al., 1997; Le Cun et al., 1998; Lafferty
et al., 2001];
Andor et al., 2016 showed that P, C Pg (assuming no lookahead)

Expected F-measure Training for Shift-Reduce
Parsing with RNINs

NN Beam (Train) Beam (Test) global
C&M, 2014 v X v X

Expected F-measure Training for Shift-Reduce
Parsing with RNINs

NN Beam (Train) Beam (Test) global
C&M, 2014 v X v X
present model v v v v

Expected F-measure Training for Shift-Reduce
Parsing with RNINs

NN Beam (Train) Beam (Test) global
C&M, 2014 v X v X
present model v v v v

At the same time, the model is optimized towards the final
evaluation metric v/

Expected F-Measure Training: Step 1

@ Train a baseline model using a cross-entropy loss (pretraining)

[]

Expected F-Measure Training: Step 1

@ Train a baseline model using a cross-entropy loss (pretraining)

[]

(000000 Ce00®

Expected F-Measure Training: Step 1

@ Train a baseline model using a cross-entropy loss (pretraining)

SR
Ty

o O

Expected F-Measure Training: Step 1

@ Train a baseline model using a cross-entropy loss (pretraining)

SR
G000

500

L(0s) = ZP tl0g), 0 ={U,V,W}

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

DA AR
(KA e
ENIIS TS

L™

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

=
=
=

=
N

T T
M N N

T
T

=
5

7
i

/F_

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

) Y,

Y AR v
EK-EK K
ANDISTIS S

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

AT B
|h%|h G Y,
k- v
AR

/:@

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

el %

Y G .
Imémém%m%m%%
o Tl K-

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

el %

Y G .
Imémém%m%m%%
o Tl K-

yil

YWyi) = Z log s (v;)

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

el %

Y G .
Imémém%m%m%%
o Tl K-

|yl
i) = logsalyi), F1(A,,AfL)

Expected F-Measure Training: Step 2

@ Let 6 = 0, and parse each sentence in the training data with beam
search

el %

Y G .
Imémém%m%m%%
o B

|yl
i) = logsalyj), F1(A,,AL)

h,

Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and
iterate

J(O) = =XF1(0) = — > p(vil0)FL(A,, AS),
Yfe/\(xn)

oy expiv(i)}
plnl6) = > ence) P{Y(V)}

Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and
iterate

J(O) = —XF1(0) = — > p(vil0)FL(A,, AS),
Yfe/\(xn)

o exp{v(i)}
plril6) = > ence) P{Y(V)}

Expected F-Measure Training: Step 3

© Compute the -XF1 loss for each sentence, do SGD update and
iterate

J(O) = —XF1(0) = — > p(vil0)FL(A,, AS),
Yfe/\(xn)

19 exp{7(yi)}
(y"(’)‘zy@ b (1))

-y Yy 2 dnl)

S
YiEN(xn) Yii€Yi G(YU

Expected F-Measure Training: Step 3

© Compute the -XF1 loss for each sentence, do SGD update and
iterate

J(O) = —XF1(0) = — > p(vil0)FL(A,, AS),
Yfe/\(xn)

19 exp{7(yi)}
(y"(’)‘zy@ b (1))

(i)
Z Z 859 (y,J 8

Vi€N(xn) Yii €Yi

Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and
iterate

hy 5 |
¥
K m@m%mﬁm%
ANDIRETTS
9J(0) 9J(0) 9se(yi)
00 Oso(yy) 00

Expected F-Measure Training: Step 3

©® Compute the -XF1 loss for each sentence, do SGD update and

o Y ek
K- Bk
|mwmwmwa%

8J9 65
20 §:zw<9>

YiEN(xn) Yi€Yi

Expected F-Measure Training

output | action sequence | y(yi) | F1

pZ1 Vit Y12... Yii -0.60 | 0.67
¥2 Yo1 Y22... Yo -1.5 0.81
3 Y31 Y32 .. Y3k -4.96 | 0.90

Expected F-Measure Training

output | action sequence | y(yi) | F1

pZ1 Vit Y12... Yii -0.60 | 0.67
¥2 Yo1 Y22... Yo -1.5 0.81
3 Y31 Y32 .. Y3k -4.96 | 0.90

J(0) = =XF1(0) = — 3, cpp) POAOFL(Ay,, AS) = — 71.00

Expected F-Measure Training

output | action sequence | y(yi) | F1

pZ1 Vit Y12... Yii -0.60 | 0.67
¥2 Yo1 Y22... Yo -1.5 0.81
3 Y31 Y32 .. Y3k -4.96 | 0.90

J(0) = =XF1(0) = — 3, cpp) POAOFL(Ay,, AS) = — 71.00

output | action sequence | y(yi) | F1

Z1 211 212 ... Z1j -0.90 0.71
2z 221 202 ... 29 -0.99 | 0.72
Z3 Z31 232 ... Z3k -3.76 0.73

Expected F-Measure Training

output | action sequence | y(yi) | F1

pZ1 Vit Y12... Yii -0.60 | 0.67
¥2 Yo1 Y22... Yo -1.5 0.81
3 Y31 Y32 .. Y3k -4.96 | 0.90

J(0) = =XF1(0) = — 3, cpp) POAOFL(Ay,, AS) = — 71.00

output | action sequence | y(yi) | F1

Z1 211 212 ... Z1j -0.90 0.71
2z 221 202 ... 29 -0.99 | 0.72
Z3 Z31 232 ... Z3k -3.76 0.73

J(0) = =XF1(0) = = 3, cax) P(ZIOFL(A,, AL) = — 71.20

Related Work

m

Perceptron Layer 9:}%%)le vi) - ol c5)
0000

Softmax Layer P(y) ocexp{B, hz +b,}

Embedding Layer 1 = [X,E,] Vg € {word, tag, label}

[m-

]nput / 1 Features Extracted
det [nsubj__ Stack Bufler 8ibi
. U lealsi), dea(si)
: | | ‘ rex(si) rea(si)

rey(res(si))

tex(ter(s:))

[Weiss et al., 2015]

Related Work

e Watanabe and Sumita, 2015

— max-margin based objective
— max-violation updates [Huang et al., 2012]

e Zhou et al., 2015

— based on Chen and Manning, 2014
— CRF [Bottou et al., 1997; Le Cun et al., 1998; Lafferty et al., 2001]

e Andor et al., 2016

— based on Chen and Manning, 2014 and Weiss et al., 2015
— also CRF

Related Work

Watanabe and Sumita, 2015

— max-margin based objective
— max-violation updates [Huang et al., 2012]

Zhou et al., 2015

— based on Chen and Manning, 2014
— CRF [Bottou et al., 1997; Le Cun et al., 1998; Lafferty et al., 2001]

Andor et al., 2016

— based on Chen and Manning, 2014 and Weiss et al., 2015
— also CRF

Optimizing task-specific metrics for parsing
— e.g., Goodman, 1996; Smith and Eisner, 2006; Auli and Lopez, 2011

Eval: F1 over Labeled, Directed CCG Deps

/\/K—/_\x

the books which John likes
NP/N N (NP\NP)/(S/NP) ~ NP _ (S\NP)/NP
NP S/(S\NP)
s/Np°
NP\ NP g
NP =

(the, NP/Ny, 1, books,)

(likes, (S\NP1)/NP>, 1, John)
(which, (NP/NP1)/(S/NP)2, 2, likes)
(which, (NP/NP1)/(S/NP)2, 1, books)

(likes, (S\NP1)/ NP5, 2, books)

The Greedy Model and Beam Search (Dev)

beam F1

b=1 | 84.61
b=2 | 84.94
b=4 | 8501
b=6 | 85.02
b=8 | 85.02
b=16 | 85.01

b e {6,8} gives +0.41% Fl over b=1

XF1 Model Dev F1 vs. Training Epochs

85.8
85.7 1
85.6
855 1
854 ¢
853 1
85.2
85.1

85

F1 on dev set

. RNN-xF1 (b =8) ——
0 10 20 30 40 50 60

training epochs

Test Set Parsing Results

Model LP LR LF CAT | Speed
c&C (normal) 85.45 83.07 8470 92.83 | 97.90
c&c (hybrid) 86.24 84.17 85.19 93.00 | 95.25
Zhangll (b=16) | 87.04 84.14 8556 92.95 | 49.54
Xul4 (b = 128) 87.03 8508 86.04 93.10 | 12.85
Am16 (b= 1) - - 83.27 91.89 | 350.00
Am16 (b = 16) - - 85.57 92.86 | 10.00
RNN-greedy (b =1) | 88.53 81.65 84.95 0357 | 337.45
RNN-greedy (b= 6) | 88.54 8277 8556 93.68 | 96.04
RNN-XF1 (b=8) | 8874 8422 8642 03.87 |67.65

Zhangll = Zhang and Clark, 2011*, Xul4 = [Xu et al., 2014];
AM16 = Ambati et al., 2016 (NN + Struct. Percep [Weiss et al.,
2015))

The XF1 model improves LR by 2.57% and LF by 1.47% over
RNN-greedy (b = 1)

Model 3
[Xu, EMNLP 2016]

Transition-based Dependency Parsing

nsubj

Configuration ¢i | [(booked a ticket) (to Google)
Stack Buffer

. ai
Action ¢ = Cjss

Derivation cp,a0— ¢1,a1 — C2,Q2

source: Google SyntaxNet

Models

e Local linear (e.g., SVM)

Models

e Local linear (e.g., SVM) = global linear (e.g., struct. perceptron)

Models

e Local linear (e.g., SVM) = global linear (e.g., struct. perceptron)

e Local NNs and RNNs

Models

e Local linear (e.g., SVM) = global linear (e.g., struct. perceptron)

e Local NNs and RNNs = global NNs and RNNs (e.g., NNs +
CRF [Andor et al., 2016] and XF1)

Models

e Local linear (e.g., SVM) = global linear (e.g., struct. perceptron)

e Local NNs and RNNs = global NNs and RNNs (e.g., NNs +
CRF [Andor et al., 2016] and XF1)

step ‘ stack (sn,...,S1,50) ‘ queue (qo,q1--.,Gn) ‘ action
0 ‘ ‘ Ms. Haag plays Elianti ‘

No “global” sensitivity to parser states

Models

e Local linear (e.g., SVM) = global linear (e.g., struct. perceptron)

e Local NNs and RNNs = global NNs and RNNs (e.g., NNs +
CRF [Andor et al., 2016] and XF1)

step ‘ stack (sn,...,S1,50) ‘ queue (qo,q1--.,Gn) ‘ action
0 ‘ ‘ Ms. Haag plays Elianti ‘

No “global” sensitivity to parser states

Solution: Stack-LSTM [Dyer et al., 2015]

Stack-LSTM [Dyer et al., 2015]

step | stack (sn,...,s1,%) queue (qo,q1...,qn) action

0 Ms. Haag plays Elianti

1 N/N Haag plays Elianti SHIFT

2 N/N N plays Elianti SHIFT

3 N plays Elianti REDUCE
4 NP plays Elianti UNARY
5 NP (S[dcl]\NP)/NP Elianti SHIFT

6 NP (S[dcl]\NP)/NP N SHIFT

7 NP (S[dc/]\NP)/NP NP UNARY
8 NP S[dcl]\NP REDUCE
9 S[dcl] REDUCE

Stack-LSTM [Dyer et al., 2015]

step | stack (sn,...,S51,%) queue (qo,q1 - .., qn) action

0 Ms. Haag plays Elianti

1 N/N Haag plays Elianti SHIFT

2 N/N N plays Elianti SHIFT

3 N plays Elianti REDUCE
4 NP plays Elianti UNARY
5 NP (S[dcl]\NP)/NP Elianti SHIFT

6 NP (S[dcl]\NP)/NP N SHIFT

7 NP (S[dcl]\NP)/NP NP UNARY
8 NP S[dcl]\NP REDUCE
9 S[dcl] REDUCE

LSTM-stack , LSTM-queue , LSTM-action

Stack-LSTM [Dyer et al., 2015]

[]

It showed promise

Stack-LSTM [Dyer et al., 2015]

[]

It showed promise

Stack-LSTM [Dyer et al., 2015]

[=T

It showed promise

Stack-LSTM [Dyer et al., 2015]

[~

¥\

It showed promise

Stack-LSTM [Dyer et al., 2015]

D*D*Q

¥\

It showed promise

Stack-LSTM [Dyer et al., 2015]

D*Q—*D

¥\

It showed promise

Stack-LSTM [Dyer et al., 2015]

-

N\

It showed promise

Stack-LSTM [Dyer et al., 2015]

-

N\

It showed promise

COMP

Stack-LSTM [Dyer et al., 2015]

Na

N\

It showed promise

Stack-LSTM [Dyer et al., 2015]

i

N\

It showed promise

LSTM Shift-Reduce CCG Parsing

the books which John likes

(B B B I
O ===

ENENERE

LSTM Shift-Reduce CCG Parsing

the books which John likes
NP/N
-
LA S)]

=]
[]

LSTM Shift-Reduce CCG Parsing

the books which John likes
NP/N N
]
[] L
P] LA A A

(A=

LSTM Shift-Reduce CCG Parsing

the books which John likes
NP/N N
NP]
W L]
-] L
P O

-0

LSTM Shift-Reduce CCG Parsing

the books which John likes
NP/N N (NP\NP)/(S/NP)

>

NP

I B B I
ST I B B B (B B B B
B B B I A=
(Y I B B I

LSTM Shift-Reduce CCG Parsing

the books which John likes
NP/N N (NP\NP)/(S/NP) NP
—_—
NP
0 e s B e B e

5K I e O e O o I B B
B B B B O o B B B
N g I B o

LSTM Shift-Reduce CCG Parsing

W]
ST I B e o o N T O o e M e B e I
I o B O o B B o B o
A

LSTM Shift-Reduce CCG Parsing

8¢ = [ny' hEihy; by

Mindlin M,
Mindiin M, (-
Mindlin M, A

A0

LSTM Shift-Reduce CCG Parsing

8¢ = [ny' hEihy; by

b, = f(B[d:; Q)] +)

H

LSTM Shift-Reduce CCG Parsing

8¢ = [ny' hEihy; by
b: = f(B[6:; Q;] +1)

at == f(Abt + S)

H

Two Simple Motivations: |

N

He learned some French and German

N

this parser

Y~ N\
He learned some French and German

Google SyntaxNet and Stanford

Two Simple Motivations: Il

input : wp ... Wp_1
axiom : 0: (0,¢, 8, ¢)
goal 1 2n — 1+H : (I‘I,(S,E,A)

w: (j, 6, xw, |8, D)
w+1:(j+176|ij-567A)

(SHIFT; 0 < j < n)

w: (f,0]s1]%0, 8, 4)
w+1:(j,d]x, 8,AU(x)))

(REDUCE; s150 — X)

w: (J,d]s0, B, A)
w+1: U,a‘x7ﬂaA)

(UNARY; s — X)

Results: Locally Normalized Models

86.56
86.20 86.25

83.05

LSTM-W LSTM-W+C LSTM-W+C+A LSTM-W+C+A+P

F1 (labeled) on dev set

Results: Locally Normalized Models

87

86 |
85 | <
84 |,

83 |
82 |
81 |
80 |
79 |

78

LSTM-wc
LSTM-wca

LSTM-w —+—

LSTM-wcap —<—

0 5 10 15 20

Training epochs

25

30

Results: Locally Normalized Models

86.42 86.56

84.95

RNN-XENT (B =1) RNN-XF1 (B =8) LSTM-XENT (B = 1)

The Label Bias Problem
[Bottou et al., 1997; LeCun et al., 1998;
Lafferty et al., 2001]

exp{v(ve, (s,9)%71; 0)}
Z (<57 q);il)

plyel(s,q)5 " 0) =

Z({e, B); 1) = > ey (. 8); N 0)}

v €T ((,8)y7")

Andor et al., (2016) showed that P, C Pg

The Label Bias Problem
[Bottou et al., 1997; LeCun et al., 1998;
Lafferty et al., 2001]

exp{v(ve, (s,9)%71; 0)}
Z (<57 q);il)

plyel(s,q)5 " 0) =

Z({e, B); 1) = > ey (. 8); N 0)}

v €T ((,8)y7")

Andor et al., (2016) showed that P; C Pg and label bias is irrespective
of the scoring function ~

XF1 Training

XF1 Training

g T B e o B B
i B I B S o B

XF1 Training

L

e .

e B e I SR Z

AN
N

<l K- v

F1 (labeled) on dev set

87.5

87.4 ¢
87.3
87.2 t
87.1

87 t
86.9
86.8 |

86.7
86.6

Results: XF1 Models

LSTM-XF1 (beam = 8) ——

0 5 10 15
Training epochs

20

Results: XF1 Models

87.76

87.62

86.83

LSTM-XENT LSTM-XF1 (B =1) LSTM-XF1 (B = 8)

Impl.: Tree-Structured Stack 4+ Dynamically
Structured Graph

shy shy shs shy shs shg res reg
!

Impl.: Tree-Structured Stack 4+ Dynamically
Structured Graph

. shy shy shs shy shg shg res reg
!

LN
N 7z
N // \\§ ’//

=
[
I

BPTS(s,.A)

2. > Onbim

mées,. A.keysi€s, . A[m]

Sr

S S G p(nIO)XFI(9) — FL(A,, AS)) =

. Zm
mes,. A.keys i€s,. A[m]

XF1 gradient per action

Impl.: Tree-Structured Stack 4+ Dynamically
Structured Graph

CNN = DyNet

Conclusions

e Global normal-form

Conclusions

o Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

Conclusions

o Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

e Local RNN

Conclusions

o Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

e Local RNN = global RNN (optimized for the evaluation metric)

Conclusions

o Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

e Local RNN = global RNN (optimized for the evaluation metric)

e Local LSTM with global sensitivity

Conclusions

o Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

e Local RNN = global RNN (optimized for the evaluation metric)

e Local LSTM with global sensitivity = global LSTM (optimized for
the evaluation metric)

Conclusions

Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

Local RNN = global RNN (optimized for the evaluation metric)

Local LSTM with global sensitivity = global LSTM (optimized for
the evaluation metric)

Beam search

Conclusions

Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

Local RNN = global RNN (optimized for the evaluation metric)

Local LSTM with global sensitivity = global LSTM (optimized for
the evaluation metric)

Beam search = struct. perceptron, RNN, and LSTM

Conclusions

Global normal-form = global dependency model with a hidden
variable (with the struct. perceptron)

Local RNN = global RNN (optimized for the evaluation metric)

Local LSTM with global sensitivity = global LSTM (optimized for
the evaluation metric)

Beam search = struct. perceptron, RNN, and LSTM = global
structured learning

